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Abstract-Forming is one of the most common manufacturing processes. This paper reviews the
applications of the boundary element method (BEM) to analyses of various forming processes, e.g.
extrusion, rolling, profile rolling, etc.

The boundary element formulations for elastic-plastic and elastic-viscoplastic problems involv­
ing large strains and rotations are considered first. The elastic strains are assumed to remain small.
The rotations and nonelastic strains, however, are allowed to be large. Bulk compressibility effects,
which are often ignored for finite strain problems of metallic solids, are explicitly included here.

An updated Lagrangian approach is adopted for the BEM analyses of forming processes. The
frictional conditions at the tool-workpiece interface are introduced through a smeared interface
element. For several forming problems, the frictional stresses change direction at the neutral region,
and the location of this region is not known a priori. It is demonstrated here that the BEM can be
used to efficiently and accurately analyse this class of planar and axisymmetric forming problems
involving both material and geometric nonlinearities, along with complicated interface conditions.
The numerical results obtained from the BEM analyses are also compared to those obtained from
FEM with regard to efficiency and accuracy.

1. INTRODUCTION

Metal forming processes such as extrusion, rolling, sheet metal forming, etc" generally
subject the workpiece to finite strains and displacements. The components of elastic strain
in these examples are generally limited to about 10- 3 since the elastic moduli of metals are
typically about three orders of magnitude larger than the yield stress. Thus, the nonelastic
strain components, which can be of the order of unity, greatly dominate the elastic strains.

A considerable body of literature (e.g. McMeeking and Rice, 1975; Lee et al., 1977;
Dawson and Thompson, 1977; Oh et al., 1983; Onate and Zienkiewicz, 1983; Chandra
and Mukherjee, 1984b,c) exists where the finite element method has been used to analyse
metal forming problems using rigid-plastic, elastic-plastic, flow-type, and e1astic-visco­
plastic material models. While the finite element method has been very successful in several
engineering applications, it is quite sensitive to aspect ratios of individual elements. This
requires remeshing where severe deformation is involved. Moreover, the secondary variables
obtained through numerical differentiation in a finite element technique are inherently less
accurate than the primary variables. In a typical displacement formulation, the secondary
variables are stresses and, in a problem involving both material and geometric nonlinearities,
the stresses at the present time essentially drive the problem through future time steps.
These are the two major limitations of typical FEM approaches that stand in the way of
robust and cost effective, yet accurate, FEM analyses of metal forming processes. The
analyses of Onate and Zienkiewicz (1983), Dawson (1984), and Kobayashi et al. (1989)
are cost effective, but all of them treat the metal forming process as viscous flow. Thus,
very critical quantities like residual stresses are difficult to recover from such analyses. Also,
the viscous flow approaches are more suitable for steady-state processes.

Rolling is a very common metal working process in industry. In view of the tremendous
amount and wide variety of rolled products manufactured every year, it can also be
considered as one of the most important ones. For more than half a century, numerous
investigations, both analytical and experimental, have been carried out on rolling. The slab
method based on a simplified equilibrium of force was first suggested by von Karman
(1925). Orowan (1943) and Hill (1959) among others, derived approximate solutions of the
equilibrium equations by using various assumptions. In later years, slip-line (Alexander,

1695



1696 A. CHANDRA

1972; among others) and upper bound (Avitzur, 1980; among others) methods were
introduceo to rolling analysis.

The slab, slip-line, and upper bound methods have been widely used in theoretical
analyses of metal forming in general and have gained popularity in industrial design of
rolling mills. However, owing to the complexities of deformation involved in metal forming
processes, particularly in rolling, various degrees of simplifications and idealizations have
become necessary. Accordingly, the methods cited above have provided useful but limited
information on metal deformation in rolling.

Over the last decade, several attempts have been made to solve the rolling problem by
using the finite element method (Dawson and Thompson, 1977; Li and Kobayashi, 1982;
Mori et al., 1982; Oh et al., 1983 and Dawson, 1987; to mention a few). Dawson models
the rolling problem as viscous flow. Li and Kobayashi and Mori et al. solve the plane­
strain rolling problem using a rigid-plastic finite element method based on the infinitesimal
theory of plastic deformation.

For rolling, forging and ring compression problems, the boundary conditions are
typically not well known at the tool-workpiece interfaces. A unique feature of deformation
in ring compression (also in rolling and forging) is the existence of a neutral point (or
region) along the tool-workpiece interface, where the tangential relative velocity between
the deforming material and the die becomes zero. The frictional stresses change direction
at the neutral point (or region). The location of this point (or region), however, is not known
a priori. In ring compression, when a short ring is compressed between two flat, parallel
plates, the inner surface bulges in the same or opposite direction of the outer surface,
depending on the friction conditions at the interface. The inner surface bulges outward if
the friction is low and bulges inward if the friction is high. Because the change in internal
diameter of the compressed ring is sensitive to friction at the tool-workpiece interface, and
due to the simple geometry, ring compression is widely used to evaluate the effects of
interfacial friction conditions in various metal working processes.

In order to determine the effects quantitatively, however, the relationship between the
geometrical change of the workpiece and the friction condition at the interface must be
established. This apsect of ring compression has been investigated by various researchers.
Avitzur (1969) and Lee and Altan (1972) used upper bound solutions, and Chen and
Kobayashi (1978) developed a variational formulation for finite element analysis of ring
compression using a rigid-plastic material model.

Forming processes are also being used increasingly in manufacturing profiled work­
pieces. Some of the well-known advantages of profile forming over metal cutting are a
shorter production period, reduced raw material requirements, and a more favorable fibrous
and strain-hardened structure of the processed material. Among the different types of
forming processes used to manufacture tooth-profiled workpieces, rolling has attained the
broadest range of applications in the manufacturing industry. One of the most important
applications of profile rolling is in gear manufacturing and cold rolling of involute profiles.
It is a very effective and efficient way of manufacturing gears (Lange and Kurz, 1984).
However, the profile rolling process, conceived and developed in the factory, has not been
investigated adequately. As a result, even today, the design of the profile rolling process is
mostly empirical.

The boundary element method (BEM-also called the boundary integral equation
method) is rooted in classical integral equation formulations of boundary value problems,
such as the work of famous mathematicians like Fredholm and Volterra. As is described
in other papers in this issue, it is a "natural" approach for linear problems in that many
linear partial differential operators can be transformed into equivalent integral forms
through the use of appropriate Green's functions. It is not surprising to observe, therefore,
that the principal BEM applications in computational solid mechanics in the 1960s primarily
dealt with linear problems such as torsion ofelastic bars (Jaswon and Ponter, 1963), bending
of elastic plates (Jaswon and Maiti, 1968), or classical elastostatics (Cruse, 1969, 1974;
Rizzo, 1967). The method was carried forward during the 1970s to include problems with
material nonlinearities such as plasticity (e.g. Swedlow and Cruse, 1971; Mendelson, 1973;
Riccardella, 1973; Banerjee and Cathie, 1980; Banerjee and Butterfield, 1981; Doblare et
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al., 1982) or viscoplasticity (e.g. Chaudonneret, 1977, 1980; Mukherjee, 1982; Telles and
Brebbia, 1983). Recently, the BEM has been applied to fully nonlinear problems, induding
both material and geometrical nonlinearities (e.g. Chandra and Mukherjee, 1983, 1984a;
Mukherjee and Chandra, 1984, 1987; Okada et al., 1987).

The BEM is another general purpose method. It is far more tolerant of aspect ratio
degradation than is the FEM and can yield secondary variables as accurate as the primary
ones (Banerjee and Butterfield, 1981; Mukherjee, 1982; Chandra and Mukherjee, 1983,
1984a). Due to these advantages, BEM has been used recently to analyse the stress and
deformation fields in complicated metal forming problems involving both material and
geometric nonlinearities, as well as frictional interface conditions. Chandra and Mukherjee
(1985, 1987) analysed plane-strain extrusion and sheet metal forming problems. Chandra
and Saigal (1991) analysed axisymmetric extrusion problems. Chandra (1989) used a BEM
formulation to investigate the stress and deformation histories of profile rolling of gears.
For profile rolling, the rolling contact boundary condition is simulated by translating
a displacement distribution corresponding to a modified Hertzian pressure distribution
(Bhargava et al., 1985). This pressure distribution is used to estimate the effects ofinelasticity
on the contact width and the continuity of the tool-workpiece interface. Using the BEM,
Chandra (1989) investigated the slab rolling process and Chandra and Srivastava (1991)
investigated the axisymmetric ring compression problem. Both of these problems involve
neutral zones whose positions are not known a priori. The BEM, being essentially a mixed
formulation, is found to be very suitable for handling such interface conditions.

A treatise of the applications of the BEM to this class of metal forming problems
involving complicated interface conditions, in addition to material and geometric non­
linearities, is the main purpose of this paper. It starts with a review of the BEM formulations
for elastic-plastic and elastic-viscoplastic problems involving large strains and rotations.
The BEM formulations are capable of using any of a class of combined creep-plasticity
constitutive models (e.g. Hart, 1976, 1982; Anand, 1982) with state variables for the
descriptions of material behavior. Applications of the BEM formulations to several metal
forming problems, such as planar and axisymmetric extrusion problems, slab rolling prob­
lems, axisymmetric ring compression problems, and profile rolling problems, are considered
next. Particular attention is paid to the interface conditions for these forming processes.
The detailed stress and deformation histories obtained by the BEM are presented, and the
insights gained from them are discussed. These insights can be very useful for designing
effective and efficient metal forming processes.

2. THE BOUNDARY ELEMENT FORMULATIONS FOR PROBLEMS WITH MATERIAL AND
GEOMETRICAL NONLINEARITIES

This section is devoted to a discussion of solutions of large strain-large rotation
problems in the presence ofplasticity or viscoplasticity using the boundary element method.
For metal forming processes, the components ofelastic strain are generally limited to about
10- 3 since the elastic moduli of metals are typically about three orders of magnitude larger
than the yield stress. Thus, the nonelastic strain components, which can be of the order of
unity, greatly dominate the elastic strains. Accordingly, it is assumed throughout that the
elastic strains are infinitesimal while the nonelastic strains, as well as the rotations, can be
arbitrary. The formulation presented here is based on an updated Lagrangian approach in
which the configuration of a body of time t is used as reference for the deformation between
t and t + !it. This necessitates updating of the geometry during computer simulation of
deformation, but provides great simplifications in the BEM formulation.

2.1. Kinematics
A three-dimensional body is considered. Unless otherwise indicated, the range of

indices is I, 2, 3. Referring to a set of spatially fixed rectangular Cartesian coordinates, a
material particle in the body in a reference configuration is assumed to have coordinates
Xi. The same particle has coordinates Xi in the current configuration.

The displacement vector Ui can be defined as
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(I)

The velocity of this material point during deformation is denoted by Vi' The deformation
rate dij is the symmetric part of the velocity gradient,

d _ 1 [avi av;]"-- -+-
IJ 2 ax; ax;'

whereas the spin

The deformation gradient F is given as

ax
F=-=R'Uax '

(2)

(3)

(4)

where R is the rotation tensor and U is the deformation tensor. From an alternative
perspective, we can also view the displacement field u as a combination of rotation Rand
deformation U. In many previous analyses, the spin w was considered to be the rate of
rotation. However, as shown by several researchers (At/uri, 1984; William, 1984; Chandra
and Mukherjee, 1986a), that assumption can lead to spurious oscillations in stresses if high
shearing strain is involved. In many forming operations, such as extrusion, the shearing
strain remains quite small. However, for other forming processes, e.g. profile rolling, high
shear strains can occur in a localized region. For such cases, the procedures using the Jaumann
rate can lead to spurious oscillations. In the present work, rotation rate n is defined as:

(5)

(At/uri, 1984; Chandra and Mukherjee, 1986a), where R T is the transpose ofR. Here, n is
considered to be the rotation rate of a material element; thus, it also represents the rotation
rate of the material coordinate frame-a set ofcoordinates attached to the material element.

2.2. Constitutive assumptions
The BEM formulation presented next is valid for a wide range of elastic-viscoplastic

models. It is valid for compressible as well as incompressible plasticity.
The first assumption is that the deformation rate tensor can be linearly decomposed

into an elastic and a nonelastic part (Nemat-Nasser, 1982; Chandra and Mukherjee,
1986a):

(6)

The next step, relating dee) to the stress, is very important. Assuming that the elastic
field obeys hypoelasticity, we can write

or, in component form,

o 'd(e) .Ii: 2Gd(e)
(jij = II. kkUij + ij .

(7a)

(7b)

Here, A and G are Lame constants, if is an, as yet, unspecified but objective rate of the
stress, and dee) is the elastic part of the deformation rate tensor.
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The proposal here is to proceed from cP(dle») to the Cauchy stress in a desired globally
fixed basis by using the equation

(8)

The value of the Cauchy stress at time zero is given by 0"0' The symbols in the above
equation are matrices corresponding to the appropriate tensors.

The rationale behind this proposal is to observe that the expression R T cP(d(e»)R delivers
the components of cP(d(e») in a local basis that is rotating with respect to the fixed global
basis, with R as the measure of this rotation. Integration is then carried out with respect to
an observer in the rotating basis (or with respect to the material coordinate frame). Finally,
premultiplication by Rand postmultiplication by R T, at any time, delivers the Cauchy stress
components in the desired global basis. As shown by Chandra and Mukherjee (1986a), in
view of eqns (7)-(8), d is equivalent to the Dienes rate of Cauchy stress (Dienes, 1979; also
called the Green-Naghdi rate by Johnson and Bamman, 1984). Goddard and Miller (1966)
also present an equation similar to (8) for the inverse of the Jaumann derivative. Rolph
and Bathe (1984) consider a special situation when the direction of principal stretches
remains fixed in the body during deformation. Equations (7)-(8) are also found to be
equivalent to those obtained by Rolph and Bathe for this particular situation.

Dafalias (1984) and Aifantis (1984) proposed decomposing the rotation tensor R into
an elastic rotation RIc) Clnd a nonelastic rotation Rln). However, the research to obtain
physical forms of RIe) and Rill) is still at an early stage. In the present work, the elastic field
is assumed to be governed by hypoelasticity, and eqn (8) with the total rotation tensor is
used for obtaining Cauchy stress in a desired global, spatially fixed basis.

The mathematical structure of the nonelastic material models with state variables that
are of interest to this study can be summarized by the following equations (Hart, 1976,
1982; Mukherjee, 1982; Chandra and Mukherjee, I986a) :

L(k) _ IkJ [ (/)]
qii - gii O"ij, qij .

(9)

(10)

They state that the history dependence of d)/) at any time can be represented by the current
value of the stress and suitably chosen state variables q;;, which can be scalars of tensors.
For incompressible nonelastic deformation,

d11 = O. (II)

Equations (9)-( II) are valid for uniform temperature, so thermal strains and temperature
effects are neglected. In the interest of brevity, further discussions of these equations are
avoided here. A more detailed discussion of the small strain model can be found in
Mukherjee (1982).

The particular model used for planar problems is that due to Hart (1976, 1982)
generalized to the case of large strains and rotations (Chandra and Mukherjee, 1984a,
1986a; Chandra, 1989). Material response in dilatation is assumed to be elastic. The model
has two state variables: the anelastic strain 0;)/), a stored strain that reflects the magnitude
and direction of prior deformation history and is responsible for induced anisotropy; and
a scalar state variable H, the hardness, which is analogous to an isotropic strain-hardening
variable or current yield stress. The evolution of o;)j) can be expressed as:

(12)

where d~) represents the completely irrecoverable (permanent) path-dependent deformation
rate. Since e)jl is a proper state variable, its objective rate is used in eqn (12), and e~jJ is
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obtained in a spatially fixed reference frame by integrating ~jjJ in the same manner as for
o
O'ij .

For axisymmetric ring compression and axisymmetric extrusion analyses, the material
model due to Anand (1982) using a single state variable representing current hardness is
used. For cases involving relatively small shear strains (less than unity), the rotation rate
Qij can be assumed to be the same as the spin tensor wij' For such cases, the hypoelastic
law can also be written in terms of the Jaumann rate of the Cauchy stress as

(13)

when

(14)

and

(15)

2.3. BEM formulation for velocities
A BEM formulation for large strain-large rotation elastic-plastic and elastic-visco­

plastic problems can now be obtained by utilizing an appropriate form of Betti's reciprocal
theorem (Chandra and Mukherjee, 1983, 1984a). Alternatively, a weighted residual
approach in an updated Lagrangian frame can be pursued (Okada et al., 1987). Such an
approach uses a rate-of-equilibrium equation in terms of the material rate of the Lagrange
stress, and the weighting function is chosen to be the displacement field of fundamental
solutions for the small strain elastic problems. These two approaches yield exactly equivalent
final expressions.

Starting from an appropriate form of Betti's reciprocal theorem (Chandra and
Mukherjee, 1983, 1984a; Chandra, 1989), we can write

(16)

where the reference solution denoted by a superscript (R) is the fundamental solution for
small strain elasticity problems. The integrands on either side of eqn (16) are identical by
virtue of the hypoelasticity eqn (7). Also, it should be noted that the domain of integration
of eqn (16) is the current volume.

Equation (16) must next be written in terms of the known reference domain BO. Use
of the updated Lagrangian frame renders this procedure particularly simple. A consequence
of this assumption during each small step is that, since the current configuration at the start
of the step is also the reference configuration, the deformation gradient F in eqn (4) is
approximately equal to the identity tensor I. Also, R ~ U ~ I. Hence, Q ~ W in an updated
Lagrangian frame. As will be shown later, the choice of an updated Lagrangian frame
significantly simplifies various relationships, particularly the one between the material rate
of the Lagrange (or nominal) stress S and the Jaumann or corotational rate of the Cauchy
stress 0'.

In expressing eqn (16) in terms of the reference configuration, the next step requires
the determination of the objective rates of the Kirchhoff stress and of the Cauchy stress.
Starting from the equation

Ja = 't',

where J = det (F) (det denotes determinant), differentiating eqn (17), and noting that

(17)



Analyses of metal forming

j = Jtr(D)

(where tr denotes trace), it is easy to show that

i" = J[tr(D)O'+u].

1701

(18)

(19)

In the updated Lagrangian approach, J ~ I and 0' ~ T. Thus, using (18) and the
definition of the particular objective rate (Chandra and Mukherjee, 1986a, b) with respect
to an observer rotating with the material particle, one easily obtains

or, in component form,

It should also be noted that

ij = i - tr (D)O"

o 0
O"ij = Tij - Vk,kITij'

Pdkk = - --,
p

(20)

(21)

(22)

where p is the current density at a material point. Thus, if the deformation is incompressible,
this term can be ignored and f}ij is set equal to ~ij' This is usually done for metal deformation
with infinitesimal elastic and finite nonelastic strains, since the nonelastic portion of metal
deformation is often volume preserving. Such, however, is not the case for compressible
materials, and eqn (21) must be used explicitly.

For compressible materials, we get (Chandra and Mukherjee, 1986b)

(23)

where kb is the bulk compressibility coefficient. For metal forming applications, the com­
pressibility effects may be neglected. It is then more convenient to recast the above equation
in the form

(24)

where

(25)

The rate of equilibrium equation in terms of the material rate of the Lagrange (non­
symmetric, nominal) stress in the absence of body forces is given as

Sji.j = o. (26)

Strictly speaking, the derivative of the rate of Lagrange stress should be taken with respect
to reference coordinates Aj, but here, in the updated Lagrangian frame, these derivatives
are approximately the same as those with respect to Xj' Also, in the updated Lagrangian
frame,

(27)

where Eij is the material rate of the Green-Saint Venant strain.
The next step requires the relationship between the Jaumann rate of the Kirchoff stress

and the material rate of the Lagrange stress. Starting from

SAS 31:12/13-F
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T = F's, (28)

one differentiates this equation with respect to time and the definition of the objective rate
to get

(29)

so that

(30)

This complicated expression simplifies immensely in the updated Lagrangian frame. One
gets:

(31 )

In the updated Lagrangian frame, F ~ R ~ U = I and F = L. Accordingly, in eqn (5),
n ~ ro. Thus, at the beginning of each step, after updating of the previous reference
configuration is completed, we can write (in updated Lagrangian frame)

Since

av
L = D+ro = ax'

is in component form, we get

Again, it is convenient to write this equation in the form

where

(32)

(33)

(34)

(35)

The tensor Gijkl is, therefore, a function only of the components of the Cauchy stress
(Jij' Using the convention

(36)

the matrix corresponding to GUkl is
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[G] =
1703

0"11 (Symmetric)
0"12 -!(0"1I-0"22)

0"13 ~0"23 -!C0"1I-0"33)

0 !CO"l I +O"ZZ) !0"2) -!C0"22-0"1I)

0 0 0 0"12 0"22

0 10"13 -10"12 10"13 0"2) -~(O"n-0"33)

0 10"23 1(0"11 +0"33) -~0"2) 0 ~0"12 - ~ (0"33 - 0" II)

0 -10"13 ~0"12 ~0"13 0 !C0"22+0"33) ~0"12 -!CO"JJ-O"n)

0 0 0 0 0 0 0"13 0"2) 0"33

The form of eqn (16) in the reference configuration DO now becomes

(37)

The rest of the derivation parallels that of the small-deformation situation. Using the
equilibrium, the law of hypoelasticity, and the divergence theorem, the left-hand side of
eqn (37) becomes

Similarly, the right-hand side of eqn (37) becomes

Finally, equating the expressions in eqns (38) and (39) and using the relevant property of
the Dirac delta function, one obtains the equation

Vj(p) = r [Uij(p, Q)T;(Q) - T;/p, Q)Vi(Q)] dS~
JoB O

+Lo [AUij,;(P, q)dW(q)+2GUij,k(P, q)d~)(q)] dV~

+Lo Uij,m(P, q)Gmik/(q)Vk,/(q) dV~

+Lo Uij,m(P, q)Cmik/(q)Vk,l(q) d V~, (40)

where T; = njOSji'
Comparing eqn (40) with the corresponding equation for small strains (Mukherjee,

1982), it is seen that the first two integrals on the right-hand side of the above equation are
analogous to the small-strain elastic-viscoplastic formulation. The traction rate term T;
requires special care and is discussed later. The third term is the so-called "geometric
correction" term that arises due to finite deformations and rotations inside the body. The
last integral is a consequence of bulk compressibility. If incompressible metal deformation
is being studied, this last integral vanishes altogether, and so does the term containing d~'!l

in the second integral of eqn (40).
Using eqn (34), the traction rate Ti in eqn (40) can be written as
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(41 )

(42)

The presence of the G tensor in the boundary traction expression is sometimes referred
to as "load correction" and is a consequence, during deformation, of the change in the area
of a surface element and the rotation of the unit normal at a point on it. The rate i; can be
interpreted as a component of the rate of the prescribed follower force, per unit deformed
surface area, on the deforming boundary.

It can be seen that, unlike elastic-viscoplastic problems with small strains and rotations,
the unknown velocity gradient now occurs in the surface as well as in some of the domain
integrals in eqn (40). Thus, iterations now become necessary at each time step. This has
been carried out in order to obtain the numerical results presented later in this paper.

As before, the limit p --+ P is taken so that eqn (40) becomes

Cij(P)v;(P) = r [Uij(P, Q)i;(Q) - T;j(P, Q)v;(Q)] dSS
JeB O

(43)

The coefficient Cij is the same as in the case of small strain-small rotation problems
(Banerjee and Butterfield, 1981, Mukherjee, 1982).

2.4. Internal stress rates
As mentioned above, analytical differentiation of eqn (40) at a source point is the best

way to obtain velocity rates at internal points. To this end, a differentiated version of eqn
(40) is

viJ(p) = r [UijJ(p, Q)i;(Q) - TijJ(p, Q)v;(Q)] dSS
JaB O

+ ~a r [AUij,i(p,q)dW(q)+2GUij.k(p,q)d~k)(q)]dV~
OXT JB O

(44)

As before, one must be careful with differentiation of kernels like Uij.m' The extra
integrals in the large strain formulation, however, present no added difficulties relative to
the small strain problem. Thus, all the earlier discussion regarding numerical evaluation of
the domain integrals applies here, also. So far, numerical results from these equations have
been obtained for planar and axisymmetric problems. In such cases, it has been possible to
evaluate each of the volume integrals analytically (for a specific simple choice of shape



Analyses of metal forming 1705

functions for the unknowns in these domain integrals) and then differentiate these integrals
at an arbitrary source point p.

Once the velocity gradients and then dij have been determined, the nonelastic defor­
mation rate dill is subtracted from it to get the elastic deformation rate dW. The objective
rate of the Cauchy stress in a coordinate system rotating with the material particle can then
be obtained from eqn (7). Equation (8) will then be used to integrate this objective rate to
obtain the Cauchy stress tensor at any instant of time.

2.5. Plane-strain cases
As before, the plane-strain equations can be obtained from the three-dimensional ones

with V3 = 0, OjOX3 = 0, and using the corresponding fundamental solution with ujB) = O.
This means that the left-hand side of eqn (16) is now summed only for i, j = I, 2. The right­
hand side of eqn (16) still retains the term (Nid~~. Following the derivation of the three­
dimensional equations, the plane-strain equation is

(45)

where, now, 1J(n) = d)nl+d~~+djn~ and the range of indices in eqn (45) is 1,2. The plane­
strain kernels Uij and Tij must be used. Using the convention

(46)

the matrix corresponding to Gijkl for plane-strain is

- 1(0" II - 0" 22)

1(0"11 +0"12)

o

The components of Cijkl can be easily obtained from eqn (25).

2.6. Plane-stress cases
The plane-stress situation considered here is that for a compressible metal. Although

generally it is sufficient to consider di1 = 0 for metal deformation (and hence dkk ~ = 0),
compressibility effects can be important in some situations, e.g. if the effect of distributed
voids inside the metallic body is important.

For plane-stress, 0"13 = 0"23 = 0'33 = O. It is also usual to assume for plane-stress that
VI.3 = V2,3 = V3,1 = V3.2 = 0 so that Wl3 = W23 = O. This means that, from the definition of
the objective rates [eqn (7)], if l3 = if 23 = if 33 = O. Thus, the left-hand side ofeqn (16) need
only be summed for i, j = 1, 2. The right-hand side, of course, must also be summed for
i, j = 1, 2 and, here, [;W can be eliminated in favor of [;W +[;W, as for the small-deformation
case. Finally, the resulting plane-stress equation can be expressed as
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(47)

where the range of indices is i, j = 1, 2. The plane-stress kernels Uij and Tij must be used
in the above. The plane-stress version of Gmik/, with the range of indices 1,2, is the same as
that for plane-strain. However,

(48)

and it is convenient to eliminate d33 in terms of d ll and d22. Using eqn (6) for i = j = 3 and
o
(j 33 = 0, one gets

v V
d33 = --I-(dll+d22)+-I---[d)nl+d~n1+d~1l.

-v -v
(49)

Thus, the presence of d~1 in eqn (47) cannot be avoided. For the incompressible plane­
stress problem, however, the last integral in eqn (57) vanishes, and the equation is expressible
only in terms of components in the 1- and 2-directions.

2.7. Numerical implementation for planar cases
Most of the earlier procedures regarding numerical implementation of the small­

deformation BEM equations (Banerjee and Butterfield, 1981; Mukherjee, 1982) also apply
here to the case of large deformation. A discretized version of eqn (43) for the velocity can
now be obtained as

Cij(PM)Vi(PM) = L f [Uij(PM.Q'i(Q) - Tij(PM, Q)vi(Q)] dSg
Ns JL1S N

+ L f [JeUij.;{PM, q)dW(q) + 2GUi j,k(PM, q)]d~)(q) dv~
n i J~An

+ L f Uij.m(PM, q)Gmik/(q)Vk.I(q) dvg
ni J6.A n

+ L f Uij.m(PM, q)Cmik/(q)Vk./ (q) d v~,
n, JAA n

(50)

where the boundary of the body in the reference configuration aBo is divided into Ns
boundary segments and the interior into ni internal cells, and vi(PM) are the components of
velocities at a point P which coincides with node M.

Suitable shape functions must now be chosen for the variation of tractions and velocities
on the surface element JiSN and the variation of the nonelastic strain rates and velocities
over an internal cell JiA n • Following essentially the same procedure as for small strain
problems, one obtains the algebraic system

[A]{v} + [B]{i} = {b}, (51)
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where the coefficient matrices [A] and [B] contain integrals of the kernels and the shape
functions, and the vector {b} contains the contributions of various quantities from the three
domain integrals. Equations for the velocity field and the velocity gradients at an internal
point are discretized in a similar fashion.

2.8. Axisymmetric cases
A BEM formulation for large strain-large rotation axisymmetric problems of

elastoviscoplasticity is presented in this section (Rajiyah and Mukherjee, 1987; Chandra
and Saigal, 1991; Chandra and Srivastava, 1991). The BEM formulation is capable of
handling compressible plasticity effects (dW =1= 0). Let us consider an axisymmetric body
under axisymmetric loading. Using cylindrical polar coordinates R, e, and Z, the nonzero
components of displacements, strains, and stresses are UR, Uz, 8RR, 800, 8zz, 8ZR (= 8RZ),
aRR, aoo, azz, and aRZ (= aZR)' All the dependent variables are functions of R, Z, and time
t. The notation used here is shown in Fig. 1. The source point is denoted by (R, 0, Z) and
the field point by (p, fJ, O. Since the problem is axisymmetric, it is sufficient to consider a
generating plane and to choose the source point in the XI-X3 plane. The three-dimensional
kernels Uij, T ij etc. (Banerjee and Butterfield, 1981; Mukherjee, 1982), are integrated for
the field point moving around a ring, keeping the source point fixed. Integrating efrom 0
to 2n results in (j = 1 and 3, no sum over P and 0 :

(52a)

2G[U d (n) U d(n) U d(n) U d(n) UPidW]} d dY+ pi,p pp + pi,' P' + \l,P (p + 'i,( ,,+ P Po Po ':>0

+Lo {Upi,p[appdpp +ap(dp~wp()-appd] +Upi,dappdp( +ap(d" - a"wp( -ap(d]

+ U\j,p[appwp(+ap(dpp +a"dp( - a(pd] + U(i,([ap( (dp(+wp() +a"d" - a"d]

Upi }+ -[aoodoo-aoodJ Podpod(o,
Po

Source coords (R, 0, Z)
Field coords (p, 9. eI

2. 2. 2. 2. 2.
r "'p +R +e +Z -2Rpcose-2Ze

Fig. 1. Geometry of the axisymmetric problem.
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where

and

A. CHANDRA

(52b)

(52c)

Here, due to axisymmetry, VR = Vj, Vz = V3, and dco = j(tip2+d(2j is an element on the
boundary of the p-, plane. The domain B °and boundary iJB°in the above equation now
refer to a generator plane of the axisymmetric solid and its boundary (excluding the portion
on the xraxis), respectively, so that the three-dimensional problem is effectively reduced
to a two-dimensional one. Also, eqn (50) is valid for the velocity at an internal source
point. The corresponding boundary integral equation can be obtained by taking the limit
p -+ P, where p is the source point of the domain B Oand P lies on the boundary aBO. This
introduces the corner tensor C;j' Deformation rate dij and spin Wi; are defined as before
[eqns (2)-(3)].

Material coordinates in the reference configuration and in the current configuration
are denoted by Xi and Xi, respectively. It should also be noted here that the REM formulation
is written in an updated Lagrangian frame. The details of the kernels for p 1: the axis of
symmetry are given by Mukherjee (1982). Kernels for p E the axis of symmetry are given
by Rajiyah and Mukherjee (1987). It is interesting to note, however, that kernels like Vi>lp

for p E the axis of symmetry can be nonzero even though VI'I is equal to zero. These are
determined by considering the appropriate components of the three-dimensional kernel
Vij.kl setting R = 0, and then integrating 8 from 0 to 2n.

The Lagrangian traction rate rlL) [rV) = niSi;) deserves particular attention here. The
traction rates can be written as:

and

where the Cauchy traction rate ric) is given as

(53c)

or

(53d)

and

(53e)

A superposed square (0) implies the objective rate of a quantity, and r:,') and r~') may be
interpreted as components of the rate of the prescribed follower force per unit deformed
surface area on the deforming boundary. The follower force moves with a boundary point
and rotates with the normal to the boundary at that point. Equations (53) can be interpreted
as the "load correction" used by several researchers using FEM. A similar technique
is used here to analyse axisymmetric extrusion problems by the REM. The details of
implementation of the load correction equations for axisymmetric extrusion are discussed
in the following section on interface modeling.

Velocity gradients at an internal point are obtained here by differentiating eqn (52a)
at an internal source point p. The term on the left-hand side of (52) becomes Vj,l' For the
boundary integral on the right-hand side, the derivatives can be readily moved under the
integral sign (since p is an internal point and Q is a boundary point, the differentiated
boundary integral is regular). This, however, is not the case for the domain integrals in eqn
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(52a) which are, in general, l/r singular. The derivatives OI/ox" where I is either of the
domain integrals on the right-hand side, can be evaluated using the method presented by
Bui (1978). Free terms result in the process. A detailed discussion of the handling of free
terms and a list are presented by Rajiyah and Mukherjee (1987). They also present an
analytical/numerical technique for obtaining Cauchy principal values ofintegrals containing
integrands with l/r 2 singularity. This approach is followed in the present work. Huang and
Du (1988) have also proposed an alternative procedure for evaluating these strongly singular
integrals.

Assuming that the elastic field obeys laws of hypoelasticity, and using eqns (6)-(7), it
is a simple matter to obtain the objective and then the material rates of the Cauchy stress
at an internal point once the velocity gradients have been determined at that point. In
cylindrical polar coordinates, the relationship between the material and Jaumann rates of
components of the Cauchy stress can be expressed as

o .
(Jee = (Jee,

iiRZ = o-RZ+(JRRQRZ-(JZZQRZ,

iizz = o-ZZ+2(JRZQRZ'

(54a)

(54b)

(54c)

(54d)

It is important to note here that in an updated Lagrangian frame, n = OJ. There are several
algorithms for obtaining the boundary stress rates. The approach first suggested by Rizzo
and Shippy (1968), and later extended to materially and geometrically nonlinear problems
by Mukherjee (1982), required tangential differentiation of the velocity components at a
boundary point. Recently, Okada et al. (1987) also proposed an alternative BEM
formulation for large strain problems of elastoplasticity. This formulation is based on a
weighted residual approach. If the velocity field for the fundamental solution is used as the
weighting function, one obtains the formulation of Chandra and Mukherjee (1983, 1984a).
The approach due to Rizzo and Shippy and Mukherjee and co-workers is used for obtaining
the boundary stress rate presented here.

The normal and tangential components of the traction rate vector are first calculated
at some point P on oB (P is assumed to lie at a point on oB where it is locally smooth).
Now, in the local coordinate system c-n (where c is tangential to oB at P),

and

o __ (c)
(Jnn - Tn

o __ (c)
(Jnc - !c'

(55a)

(55b)

where iinn and iinc are the normal and shearing components of objective rates of Cauchy
stress at P, respectively. The normal and tangential components of Vc and Vn are calculated
next, and their tangential derivatives (ovcloc and oVn/oc) are obtained at P by numerical
differentiation along the boundary element. The constitutive equations can then be written
as

(56a)

and

(56b)

The spin is given as
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[]

)
_ _ (Jnc (n) aVn

(t en - (thz - 2G + d nc - 7JC' (57)

The nonelastic deformation rates d<;'k, dW, d~t and d<;'~ are known at P from the
Cauchy stresses through an appropriate constitutive model. In the above, (t)cn is the spin
at P, which is invariant with respect to coordinate transformation. Now, d~~) and d~~) are
obtained as

(58a)

and

(58b)

where

The quantities 3c" 300, and WRZ are determined from eqns (56)-(57). The quantities 3RR ,

3zz, and 3RZ can then be evaluated from stress transformations:

[] 0 2 0 2 20
(JRR = (JnncZ+(JccCR- (JncCRCZ,

o 0 0 0
(Jzz = (Jcc - (J RR + (J nn'

(59a)

(59b)

(59c)

2.9. Numerical implementation for axisymmetyric problems
For numerical implementation, the first step, as usual, is to divide the boundary as of

an R-Z section of an axisymmetric body into N s boundary segments and the interior into
nj internal cells. Denoting by Vj(PM ) the components of the velocity at a point P which
correspond to node M, a discretized version of the boundary equation [eqn (52) with p-4
P; no sum over p, B, ,; and j = 1 and 3] can be written as

(60a)

A similar discretized equation can also be written for the velocity gradients Vj,T(P) by
differentiating eqn (52a) at an internal source p and discretizing. Differentiating eqn (52a),
the left-hand side becomes viJ(P). On the right-hand side, the boundary integral becomes

In the above expression, the derivatives have been moved under the integral sign. Since p
is an internal point, Q is a boundary point, and the above integral is regular. This, however,
is not the case for the domain integrals in eqn (52a), which are in general I/r singular. The
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derivatives OJ/ax" where I is either of the domain integrals on the right-hand side of (52a),
can be evaluated by the technique of Bui (1978). This approach gives rise to free terms.
The appropriate free terms from the various derivatives of the displacement kernels for the
cases p ¢ the axis of symmetry and p E the axis of symmetry are given in Tables I and 2,
respectively. It is interesting to note the free terms for some first derivatives of Up1 and Up3

if p E the axis of symmetry.
Thus, for example, the explicit form of the equation for v!,f(Pd can be written as (at

the kth internal source point, no sum over p or (, pk¢ x 3-axis),

Table I. Free terms in the velocity gradient equations for the case p ¢ the
axis of symmetry

Free terms
Radial differentiation Axial differentiation

Kernel (/ = I) (/ = 3)

Upl,p
5-8v 0

16(1-v)G

Upl,e 0
7-8v

16(1 -v)G

Uel,p 0 I
16(1 -v)G

Uel,e
I 0

16(I-v)G

Up3,p 0
I

16(I-v)G

Up3,e
I

0
16(I-v)G

Up,p
7-8v 0

16(I-v)G

Uo .e 0
5-8v

16(1-v)G

Table 2. Nonzero free terms in the velocity gradient equations for the case pE the axis of
symmetry

Free terms Free terms
radial differentiation axial differentiation

Kernel (I = I) Kernel (/= 3)

Upl,p
17-20v

Up3,p
1

60(l-v)G 60(I-v)G

Upl,e
1

Up,e
7-lOv

30(l-v)G 30(I-v)G

Upl
1

Up3
1

12(I-v)G 12(I-v)G
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+2G[ Upl,prd~nJ+ Up1,ndW + U(l,prd~~ + U(l,nd~,) + Up~:dWJ}PodPO d(

i[ 5-8v _ 1 ] (n) 5-8v (n) _ 1 (n)
+ l6(1-v)G l6(l-v)G d (Pk)+8(1_v/pp (Pk) 8(1_v)d,dPk)

5-8v
+ l6G(l- v) {app(Pk)dpp(Pk) +ap,(Pk)[dp,(Pk) -wp,(Pk)] - (pp(Pk)d(Pk)}

1
l6G(1- v) {apJpk)[dp,(Pk) +wp,(Pk)] +a,,(pdd,,(pd - a,,(pk)d(pd}· (60b)

Similarly, other components of the velocity gradient (for Pk rt x 3-axis) and Pk E X raxis can
be evaluated. In eqn (60b), dA~(Pk) is a circle of small radius '1, centered at Ph in the plane
of the generator of the axisymmetric solid. The Cauchy principal values of these integrals,
with '1 -+ 0, must now be evaluated accurately. This, in general, is a formidable task since
the integrands are 1/r2 singular. Rajiyah and Mukherjee (1987) have developed a novel
analytical-numerical technique for accurately determining these integrals, and a similar
approach is pursued here. Discussion of this integration scheme is avoided here for the sake
of brevity. A detailed discussion of the analytical-numerical scheme for singular integration
of Uj},kl over internal cells is given by Rajiyah and Mukherjee.

Suitable shape functions must now be chosen for the variation of velocity and traction
rates along boundary elements and for the variation of dt) and Vi.} over internal cells. It
should be noted here that ,~L) denotes Lagrangian traction rate. Thus, the present for­
mulation involves velocity gradients in the domain integrals, as well as in the boundary
integrals of eqn (60), As will be discussed later in the section on interface modeling, the
Cauchy traction rate ,1') in the tangential direction at the tool-workpiece interface is
obtained from a friction model. In the present work, the domain shape functions for Vi,}

are used to approximate those quantities at the boundary nodes, instead of using separate
shape functions for Vj,} on the boundary.

2.10. Solution strategy
The solution strategy for these planar and axisymmetric problems are similar and can

be best explained by referring to Fig. 2. The discussion here is about compressible elastic­
viscoplastic deformation of metals using a state variable-type constitutive model.

The presence of velocity gradients in the boundary traction rates and in some of the
domain integrals requires iterations within each time step. As mentioned before, the
unknown velocity gradient components occur in a domain integral for elastic-plastic prob­
lems, even for the case of small strain. Here, this situation occurs whether elastic-plastic or
elastic-viscoplastic constitutive models are used. The solution strategy for these problems
can be described as follows:

(a) The elasticity problem is first solved to obtain initial displacements. For this step,
eqn (51) is solved with {b} = 0 for the unknown components of u and or in terms of the
prescribed ones.

(b) The initial values of the displacement gradients are obtained from a truncated
version of eqn (60a) with d~n) = 0, Vk,n = 0, and v and i" replaced by u and or in the rest of
the equation. The initial stresses are determined from strains through Hooke's Law. The
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Fig. 2. Flow chart for the solution of large strain elastic-viscoplastic problems.

displacement gradients are used to form the deformation gradient matrix F. This matrix is
decomposed according to the polar decomposition theorem F = RU, and R is obtained.

(c) The tensor dik) at zero time is obtained from the constitutive equations.
(d) The first approximation to vj(P) at t = 0 is calculated from the boundary equation

for velocity with Vk,/ set to zero. It must be noted that the velocity gradients occur in two
of the domain integrals, as well as in the expression for ri •

(e) The first approximation to vj,r(p) at t = 0 is obtained from the velocity gradient
equation with all the velocity gradients in the integrals on the right-hand side set to zero.
The Vj,r(p) values are extrapolated to get vj,r(P).

(f) The velocity gradients are inserted into the boundary equation and the full equation
is solved to determine a second approximation to vj(P). This vj(P) and the first approxi­
mation of velocity gradients are then used to obtain a second approximation for Vj,r(p).

(g) Step ([) is repeated until the required convergence is achieved and Vj(P) is deter­
mined at zero time.

(h) The iterations are completed with Vj(p), vj,/(p), iijj , and ~it are calculated in the
fixed global basis at zero time. The material derivative ofF is determined from the equation
F = LF, where L jj = Vj,j'

(i) Time integration is performed next. An explicit Euler-type scheme with proper time
step controls (Kumar et al., 1980) is used to find the relevant quantities, including F, at
time At. F is decomposed into RU at time At, and R is obtained at At.

(j) The objective rates of the Cauchy stress and the anelastic strain are integrated in
time. Here,

and similarly for [6(a)].

[01'=M = [O'L~ 0 + ([R];r~M[iiL=O[R]'=M)At

[O'L=M = ([R][O'][Rnt=M (61)



1714 A. CHANDRA

Thus, the relevant quantities (displacements, displacement gradients, stresses, anelastic
strains, etc.) are found at t = I1t. The time histories of various quantities are then obtained
by marching forward in time and by suitable updating of the geometry and kernels. For
cases involving relative small shear strains, time marching can also be carried out with the
material derivatives of the tensor (obtained from objective, e.g. Jaumann, derivatives).

3. APPLICATIONS TO FORMING PROBLEMS

Applications of the above-cited BEM formulations to various planar and axisymmetric
metal forming problems are presented in this section. Interface modeling of these processes
is discussed and numerical results obtained by BEM are presented.

For both planar and axisymmetric problems, the BEM program uses straight boundary
elements and polygonal internal cells. The velocity and traction rate are taken to be piecewise
linear over the boundary elements, while the nonelastic deformation rate and the velocity
gradients are assumed to be piecewise constant over the internal cells. The values of the
boundary variables are assigned at nodes that lie at the intersections of boundary segments.
Possible discontinuities in tractions are taken care of by placing a "zero length" element
between nodes and assigning different values of traction at each of those nodes. All inte­
grations of kernels are carried out analytically. The last two terms in eqn (44) are evaluated
by first performing the integration over an internal cell for an arbitrary source point Pm and
then differentiating the integral at Pm (Mukherjee, 1982; Chandra and Mukherjee, 1984a,
1987).

3.1. Plane-strain extrusion
Extrusion is a commonly used forming process. The shearing strains in an extrusion

process are much smaller than unity. Accordingly, Jaumann rates utilizing the spin tensor
can be used for objective rates of tensor quantities.

3.1.1. Interface modeling. Interface conditions at the die-workpiece boundary are
considered here for problems of plane-strain extrusion. The assumptions are best explained
in terms of a local coordinate system (a, {3, y). The origin of this coordinate system is
positioned on the die-workpiece interface. The a-axis is tangential to the die surface and
the {3-axis is the outward normal to the die surface.

A consequence of the assumption of plane-strain is that

(62)

It is further assumed that the contact or lubricant layer adjacent to the die surface cannot
provide any resistance to tensile or compressive deformation. Thus, the scheme is equivalent
to having an interface or bond element with zero stiffness in the direction tangential to the
contact surfFJ,ce. Therefore,

(Too = 0, (63)

so that only pressures and shear loadings get transferred across the interface and the stretch
or compression of either the die or the workpiece is not transferred to the other. Another
assumption made here is that the material is incompressible so that

doo+dpp = ° (since dyy = 0). (64)

Using the above assumptions, zero normal velocity (vp = 0), and the fact that the
normal has components (0, 1,0) in the local coordinate system, the load correction equation
in the local coordinate system becomes
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Fig. 3. Geometry of the plane-strain extrusion problem.
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(65)

where a superposed asterisk indicates the Jaumann rate. The other traction component is
assumed to vanish, Le.

The final assumptions relate to friction,

ip = o. (66)

(67)

(where 9, and h are the shear modulus and the height of the interface element, respectively,
and ~ is the coefficient of friction), and

(68)

where" is the local curvature.
The rate of the traction component, t a , has now been obtained in terms ofthe tangential

velocity Va' its gradient in the tangential direction Va,a, and the nonzero stress components
(jap and (jpp.

3.1.2. Numerical results. The primary purpose of obtaining the numerical results
presented here is to demonstrate the ability of the boundary element method (BEM) to solve
metal forming problems involving both geometric and material nonlinearities. Handling of
the boundary conditions at the die interface requires special care for the extrusion problem.
In the present BEM analysis, this can be incorporated quite easily through "load correction"
[eqns (41)-(42)]. The material used is commercially pure aluminum at 24°C. The material
parameters for Hart's model along with the experimental basis can be found in Alexopoulos
(1981). The parameter G,/h = 1.268 x 10 5 MPa m- 1

•

The geometry of planar extrusion considered here is shown in Fig. 3, and numerical
results are presented in Figs 4-7. Figure 4 shows the steady-state distributions of the

3.0 ---0.00'''/8

--.---- 0.0'"18
2.0 --0.03"/8

'.0 x2 /a = 0.89

°11

HO 0 -2 4 x1/a

-'.0

-2.0

-3.0

Fig. 4. Steady-state distribution of (111 at different piston velocities for two values of X 2 (Il = 0).
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longitudinal stress (J II for three different velocities in the absence of friction. In particular,
the centerline of the workpiece is chosen to be the XI-axis and the stress distributions are
shown for material points in the deformed configuration, which initially had the same
relative ordinate (X2/a = 0.11 and 0.89) in the billet. Maximum residual tensile stress in an
extruded workpiece is of crucial importance in design, since this is the primary potential
source for crack initiation and growth. It is seen from Fig. 4 that the rate dependence of
this quantity is quite significant. As the piston velocity is tripled from 0.254 mm s- I to
0.762 mm s-1, the BEM analysis predicts a change of 15.5% in the maximum longitudinal
tensile stress in the workpiece. This compares well with the 17% change predicted by the
FEM analysis (Chandra and Mukherjee, 1984b). The faster the billet is forced through the
die, the less time there is for stresses to relax at material points in the workpiece as they
move through the die. Consequently, the maximum longitudinal tensile stress upon exit
from the die increases substantially with the speed of extrusion. Predictions ofcrucial effects
like rate dependence of residual stresses is only possible through a detailed analysis using
a realistic elastic-viscoplastic model for material behavior. It should be emphasized again
that the material parameters for aluminum used in this calculation are those measured
carefully by experiments (Alexopoulos, 1981).

Another important feature of elastic-viscoplastic analysis is that, following a peak
value, the magnitude of (J II decreases as a function of X I in most of the billet that has passed
through the die. This is a result of stress relaxation in the workpiece after it is deformed,
and the BEM predictions for such relaxations compare very well with those predicted by
FEM analysis (Chandra and Mukherjee, 1984b).

The results for the steady-state distributions of shearing stress (J 12 are shown in Fig.
5. It is seen that there is a marked variation of shearing stress inside and in the neighborhood
of the die. Residual longitudinal stress distributions over a cross section (x I = O.4a from
the die exit) from the two methods are shown in Fig. 6. It should be noted that these residual
stress distributions must be self-equilibrating and, for the residual stresses obtained from
the current BEM analysis, the error in satisfying equilibrium is about 5%.

The effect of friction on the results is depicted in Fig. 7. Three different values of
friction are chosen for a piston velocity of 0.762 mm S-I. The presence of friction increases
the longitudinal stress peaks significantly. Of course, the friction model with constant
coefficient of friction that is used here is crude at best, and much work remains to be done
on modeling friction in metal forming processes. The present analysis does show, however,
the effects of friction. The BEM predictions match quite well with FEM predictions of
Chandra and Mukherjee (l984c).

3.2. Profile rolling of gears
The problem of profile rolling is considered next. This forming process involves rolling

contact. Moreover, the shear strains can be high. Accordingly, care needs to be taken to
avoid any spurious stress oscillations.

3.2.1. Interface modeling. Boundary conditions at the tool-workpiece interface are
considered next. The working principle of the cold profile rolling process is shown in
Fig. 8. Both rolling tools have the profile of the tooth space to be formed on the workpiece.
These two profiled rolls rotate like planets about their orbital axes and can rotate either in
the same direction (down-profile rolling) or in opposite directions (up-profile rolling) with
respect to the feed of the workpiece. Due to this arrangement, the tools come in brief
contact with the workpiece. The contact, occurring as a sudden stroke for a short period,
is made once per tool revolution about the orbital axis. The work material is pushed radially
from the tooth base toward the tooth top. During this forming operation, the workpiece
does not rotate. As the tool moves away from it, the workpiece is turned by a tooth pitch
and can also be advanced simultaneously in the longitudinal direction. Hence, the tool rolls
and slides on the workpiece, and it is this combination of rolling and sliding that makes
interface modeling quite difficult for profile rolling.

A considerable body ofliterature (Campos et al., 1982; Martins and aden, 1983; Pires
and aden, 1983; Torstenfelt, 1983; Bathe and Chaudhary, 1985) exists where sliding

SAS 31:12/13-G
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contact is handled in the FEM formulation by modifying the functional used in the vari­
ational principle. This typically introduces a Lagrange multiplier, or a penalty function,
and gives rise to a mixed formulation. Zolti (1983) introduces an orthotropic gap element.
It has been shown by Chandra and Mukherjee (1984b, c) that a gap or interface element
can also be simulated within the original finite element through load correction. This
smearing of the interface element keeps the geometric modeling simple (no need for extra
interface elements) and retains the advantages of displacement formulations in FEM (posi­
tive definite stiffness matrix, ease of specifying boundary conditions, etc.).

Mukherjee and Chandra (1987) also applied the load correction technique to BEM.
Since both displacements and tractions appear as unknowns, a BEM formulation is essen­
tially a mixed one and is easily applicable in a contact situation. Here, the strategy of
Mukherjee and Chandra is extended to include rolling contact situations as well.

The particular rolling contact model used here is the one proposed by Bhargava et al.
(1985) and is based on the theory of Merwin and Johnson (1963). It was observed by
Bhargava et al. that, for indentation loading (without rolling), the normal displacements
under the center of contact are substantially larger than that predicted by the Hertzian
theory. This larger displacement must be accompanied by an increase in the contact width
in order to maintain continuity of the contacting surfaces. Also, the Merwin and Johnson
analysis makes no attempt to satisfy the equilibrium requirements while rolling. The stress
components acting at any depth below the surface are uncoupled from those acting at any
other depth. Thus, any region that remains elastic in the Merwin and Johnson analysis is
devoid of residual stresses, and equilibrium for a plane surface free from traction is attained
at the end of every contact sequence by completely relaxing elastically the radial and shear
residual stresses. Bhargava et al. make the analysis rigorous with respect to equilibrium
and continuity requirements. The normal displacement differences of points at the center
and edges of the two surfaces are required to be the same. This three-point continuity
requirement increases the contact width. Accordingly, the Hertzian pressure distribution is
modified. The total applied load, however, remains unaltered:

fa' [(X2)JO.5 np' a' np a
P = -a' p'o 1- a,i dx =~~=-;l-·

Here, P is the total applied load; Po and 2a are the Hertzian peak pressure and contact
width, respectively ;p~ is the modified pressure peak; and 2a' is the modified contact width.
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The interface conditions for profile rolling of gears can be best explained in terms of
a local coordinate system (a, P, y). The origin of this coordinate system is positioned at the
tool-workpiece interface. The bottom left figure in Fig. 8 shows a section of the workpiece
cut perpendicular to the direction of the feed. The a-axis is tangential to the interface at
this section, and the p-axis is outward normal to the workpiece surface at this section. The
y-axis is perpendicular to this section and is along the direction of the axial feed of the
workpiece. The bottom right figure in Fig. 8 shows another section of the workpiece parallel
to the direction of the feed. It may be observed that the y-axis is also tangential to the
planetary motion of the tool and represents the direction of rolling.

Accordingly, the rolling contact occurs in the py plane. Here, plane-strain conditions
are assumed for rolling contact. The rolling contact is also assumed to be frictionless.
Bhargava et al. (1985) translate the modified pressure distribution along the rolling
direction. In profile rolling, however, the displacement boundary conditions are specified.
As shown in the bottom right figure in Fig. 8, the depth of bite can also vary within a
single forming stroke. Hence, the rolling contact situation is modeled by translating the
appropriate displacement distribution in the py plane along the y-direction. Unlike the
model of Bhargava et al., the pressure distribution and total load are not known a priori
in this case but are calculated for each increment of translation. Once the complete pressure
distribution is obtained from the displacement distribution, the rolling contact model of
Bhargava et al. is used to obtain the corresponding displacements, and the procedure is
repeated until convergence. Upon convergence, the pressure distribution is integrated in
space over the entire bite and a resultant load is obtained. The rate of this loading is stored
and is later used as iP for analysis of deformation in the ap plane.

Most of the sliding at the tool-workpiece interface, as well as the deformation of the
workpiece, is expected to occur in the ap plane. It is also the deformation pattern in the ap
plane that determines the shape of the gear teeth. For the analysis in the ap plane, it is
assumed that vy= O. Thus, a plane-strain situation arises.

Hence, the model of profile rolling presented here is a combination of the two plane­
strain models. The rolling contact between the tool and the workpiece occurs in the py
plane, whereas the sliding of the material that directly influences the deformation pattern
and the shape of the gear teeth takes place in the ap plane. Thus, the following BEM
analysis and the results pertain to the rxp plane and assume plane strain conditions in that
plane. However, the rolling contact model (in the py plane) determines the applied traction
at the interface and thus influences the BEM analysis in the ap plane.

A consequence of the plane-strain assumption in the ap plane is that vy = 0 and
(Jay = (Jya = (J py = (Jyp = O. It is further assumed that the simulated interface element has zero
stiffness in the direction tangential to the contact surface; therefore, only pressures and
shear loadings get transferred across the interface. Hence, (faa = 0 at the interface.

Using the above assumptions, zero normal velocity at the interface (vp = 0), and the
fact that the normal has components (0, I, 0) in the local coordinate system, the load
correction equation in the local coordinate system at the interface can be written as

(70)

and

The local rotation rate on the interface is defined as

map = KV a ,

(71)

(72)

where K is the local curvature. It should be noted, however, that eqns (70)-(72) are valid
only in an updated Lagrangian frame.

Here, ip is obtained from the rolling contact model in the Py plane. As mentioned
earlier, the rolling contact in the py plane is assumed to be frictionless. Once the time history
of the pressure distribution is obtained from the rolling contact model, the time derivative
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of the pressure distribution and the resulting rate of loading are obtained. Next, the work­
equivalent traction rates are obtained at nodal points in the rxf3 plane and are transformed
to the appropriate coordinate system to get ip.

Much research effort is currently focused upon the development of appropriate sliding
mechanisms. Considering the development of our algorithm we should use a friction model
that is physically realistic and easily extendable as more information becomes available.
Coulomb's law of friction with Ils as the static coefficient of friction and Ild as the dynamic
(or kinetic) coefficient of friction fulfills these criteria.

For the particular problem considered here, it is assumed that sliding occurs in the rxf3
plane only. If t , represents the developed tangential tractions along the interface, we assume
that there is no relative motion between two adjacent particles on the tool and the workpiece
as long as 1t, 1 ~ Ilstp (t p = compressive normal traction). The maximum traction of static
friction is the smallest force necessary to start motion. During motion, the magnitude of
the tangential traction resisted by friction is Ildtp (with Ild ~ 11,). The motion continues as
long as the frictional traction developed is equal to Ildtp. Once the developed tangential
traction drops below the dynamic friction Ildtp, the relative motion between the tool­
workpiece interfaces ceases until such time that, again, the developed tangential traction
exceeds the frictional capacity.

Since the material is incompressible and the normal at the tool-workpiece interface
has components (0,1,0), the developed tangential traction rate can be obtained as

• 0

t , = (1,P' (73)

The developed tangential traction (t , ) is compared to the frictional capacity to determine
sticking or sliding situations.

3.2.2. Numerical results. The rolling contact problem is solved first and iterated until
convergence is obtained. The normal traction rate ip is obtained for later use in the plane­
strain BEM analysis. In the BEM analysis, the velocity gradient in the previous time step
is used as a first guess at each time step and iterated until convergence.

The geometry of the plane-strain forming problem is shown in Fig. 9. Initial blank
diameter is 59.65 mm. The pitch diameter is 60 mm. Addendum and dedendum diameters
are 65.0 mm and 53.75 mm, respectively. The teeth have a pressure angle of 20°. The
material used is AISI 1045 heat-treatable steel. As shown by Eggert and Dawson (1987)
and Mukherjee (1982), the material data (Bardes, 1978; Lange and Kurz, 1984) are fitted
to Hart's state variable model. The state variable model parameters for AISI 1045 steel are
found to be:

E = 1.07 X 106 MPa (3 x 10 7 psi), v = 0.3

A=0.15, M=7.8, m=5.0

M = 1.2 x 10 6 MPa (1.74 x 10 8 psi)
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Fig. 9. Workpiece geometry for profile roIling.
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Fig. 10. Radial forming forces in profile rolling (Il, = Ild = 0): (a) down-profile rolling; (b) up­
profile rolling.

(*)
dsr=l.4xlO-4Is-1 at (Ts=68.95MPa(10 4psi)

do = 3.15s- 1 at (To = 68.95 MPa(l04 psi)

f3 = 0.910 X 10 3 MPa (0.132 x 10 6 psi), (j = 1.20.

The initial values of the state variables are:

H(x, 0) = 600 MPa (87 x 10 3 psi)

at> (x, 0) = 0.0.

As the tool comes in contact with the workpiece at the tooth spaces, the material is
pushed in toward the dedendum. As a result, material movement is induced and the material
between two spaces is pushed out to the addendum-thus forming the gear teeth.

Figure 9 shows a symmetric half of the workpiece geometry. As the tool forms a
particular tooth space, the two adjoint flanks are partially formed. A tooth flank becomes
fully developed when both of its adjoint tooth spaces are formed completely. As shown in
Fig. 8, two formed tools situated diametrically opposite each other are used. Three con­
secutive tooth spaces are formed in the symmetric half of the blank to study mutual
influences of neighboring tooth spaces. This also develops the fully formed tooth flanks.
Thus, the analysis for the formation of three consecutive tooth spaces is considered sufficient
to understand the basic mechanics of profile rolling of gears.

Figure 10 shows the radial forces as a function of tool position for two different tool
penetration velocities. As the tool penetrates into the workpiece, the radial forces rise



1722 A. CHANDRA

1.5r----------------,

1.0

0.5

- tooth space
--- tooth flank

o0 1-_'--_-'---_-'---_-'--_-'--_-'----.-:
20 22 24 26 28 30 32

Radial distance from blank center (mm)

Fig. II. Radial variation of equivalent strain in profile rolling (/l, = /ld = 0).

rapidly. For down-profile rolling, the peak occurs about 5-100 before the tool reaches its
lowest position [as shown in Fig. lO(a)]. As observed in Fig. lOeb) for up-profile rolling,
the peak radial force occurs just after the tool attains its lowest position. It can be distinctly
recognized that in down-profile rolling, the forming process is completed shortly after the
tool passes through its lowest point. On the other hand, for up-profile rolling, the maximum
force occurs at this point. The resistance to rolling is greater in up-profile rolling. This is
manifested in the higher maximum radial force for up-profile rolling. In down-profile
rolling, the contact zone between the tool and the workpiece is larger compared to the
corresponding contact zone in up-profile rolling. After passing through the maxima, the
radial forces decrease rapidly for both down- and up-profile rolling. This drastic fall can
be ascribed to the rapid reduction in tool bite. The peak force obtained from the BEM
analysis for down-profile rolling compares well with the peak force obtained by Lange and
Kurz (1984). The BEM analysis predicts the peak force to be 20 kN, while Lange and Kurz
observed the peak force to be 21.78 kN. This difference is quite small, considering the fact
that the material parameters used here only approximate the behavior of the material used
by Lange and Kurz. For both down- and up-profile rolling, increasing the total penetration
velocity by an order of magnitude increases the peak radial force by about 12%.

As the tool penetrates the workpiece, it induces extreme deformations near the periphery.
Figure 11 shows the variations of equivalent strain ell (second invariant of Almansi
strain) over radial lines over a tooth space, as well as a tooth flank. In both cases, the strain
is heavily concentrated near the periphery. Along a radial line over a tooth space, ell drops
from a peak value of 1.42 to 0.1 as we move just 4 mm inside. Along a radial line over a
tooth flank, ell also drops from 1.44 to less than 0.1 over a radial distance of 9.5 mm. The
magnitude and distribution of ell are found to change very little as the tool velocity is varied.

Figure 12 shows the variations of all (second invariant of Cauchy stress) along radial

3

/Tn
Ho

2

- tooth space
- -- tooth flank
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Fig. 12. Radial variation of equivalent stress in profile rolling (/l, = /ld = 0).
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lines over a tooth space and a tooth flank. In both situations, (T1I rises sharply as we approach
the periphery. As the radial distance decreases from 26.875 mm (periphery of tooth space)
to 21 mm, (TlI/H drops from a peak value of 3.8 to about 0.9. Along a radial line over the
tooth flank, (TII/H drops from 3.9 at the tip of the tooth to 1.75 at the root of the tooth. It
is evident that severe deformation near the periphery results in very high strain-hardening
of the material at the periphery. This is desirable since the strain-hardening hardens the
gear teeth. This also improves the endurance limit of the formed gear teeth.

The effect of friction on the circumferential distribution of ell is shown in Fig. 13. The
origin represents the center of a tooth flank, and a circumferential distance of 1.25 rc
represents the center of the next tooth space. For complete sticking at the tool-workpiece
interface (J-! = (0), there is no flow of the material in the circumferential direction. At tooth
spaces, the material is pushed inward and, as a consequence, the material in between is
pushed up. However, at high friction, the material cannot flow easily in the circumferential
direction. Hence, extreme shear deformation occurs at the boundary between a tooth space
and tooth flank and can induce cracking. Proper lubrication of the interface alleviates this
problem. Lubricating the interface reduces the coefficient of friction and smoothes the
circumferential distribution of ell' As seen in Fig. 13, ell is higher at the boundary between
a tooth space and tooth flank than at the centers of the space and flank regions. At J-! = 0.0,
the distribution is almost uniform, with ell equal to 1.76 at the boundary between the two
regions. At J-! = 0.2, however, the distribution gets sharper, with ell equal to 2.58 at the
regio.l boundary. At J-! = 0.3, the peak value of ell rises to about 3.125. Thus, at higher
frictions, the shearing action gets localized rapidly.

3.3. Plane-strain slab rolling
A unique feature of slab rolling processes (shown schematically in Fig. 14) is the

existence of a neutral point (or region) along the tool-workpiece interface where the
tangential relative velocity between the deforming material and the tool becomes zero. The
frictional stresses usually change direction at this neutral point (or region). The location of
this neutral point or zone, however, is not known a priori. Accordingly, care must be taken
to model this phenomenon appropriately.

3.3.1. Interface modeling. In addition to plane-strain assumptions [eqns (62)-(64)], the
sliding contact at the roll-workpiece interface can be represented as

{
2 _ I (IV'I)} V,(Tap = -J-!Ppp -tan - -
rc a IV,I (74)

(Chen and Kobayashi, 1978; Li and Kobayashi, 1982), where V, is the relative velocity
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Fig. 13. Circumferential variation of equivalent strain in profile rolling at different friction
coefficients.
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Fig. 14. Schematic diagram of plane-strain rolling.

between the roll and the workpiece in the tangential direction (a-direction), "a" is a constant
several orders of magnitude smaller than the roll velocity, and f.l, is the static coefficient of
friction. At the beginning of the roll bite, the velocity of the workpiece is zero. Hence, Vr

is large (equal to the tangential velocity of the roll surface). Thus, (J,p = - f.l,(Jpp, which
represents the case of static friction. As the process of rolling continues, the workpiece is
driven by the rolls and the relative velocity between the roll and the workpiece tends to
decrease. Finally, a point (or region) is reached where the workpiece has reached the velocity
of the roll. This point (or region), where the relative velocity at the roll-workpiece interface
is zero, is called the neutral point (or region). At the neutral point, there is no shear transfer
between the roll and the workpiece. Thus, (J.,p at this point drops to zero. Beyond this point,
the workpiece tends to move faster than the roll, and the sense of (Jafi at the interface
reverses. Accordingly, the developed tangential traction also reverses direction at this point.

While the friction models of Chen and Kobayashi (1978) and Li and Kobayashi (1982)
represent the phenomenon of a neutral point quite well, they relate tangential traction
rather than the tangential traction rate to the relative velocity. This is consistent with
Coulomb's law of friction. The BEM formulation, however, is in rate form. In the case of
plane-strain rolling, we can also show that

• [J

t, = (J,fi (75)

since the material is incompressible and the normal at the tool-workpiece interface has
components (0, 1,0). Thus, knowing (J.p and the size of the time step, we can estimate i•.
This estimated value of ia is incorporated into the load correction equations and the
assembled BEM equation is solved for the unknown velocities and traction rates (Chandra
and Mukherjee, 1987). The estimate of i, is updated, and the scheme marches forward in
time.

3.3.2. Numerical simulation. All integrations of kernels are carried out analytically.
The two additional kernels (for nonlinearities) are evaluated by first performing the inte­
gration over an internal cell for an arbitrary source point Pm and then differentiating the
integral at Pm. Time integration for the rolling problem is carried out by an explicit Euler­
type method and an implicit ABM method with proper controls (Chandra, 1986).

The solution strategy, in essence, consists of marching forward in real time with suitable
updating of the configuration of the body. The presence of velocity gradients in the boundary
traction rates and in the domain integral for geometric nonlinearity requires iterations
within each time step. Body force rate is assumed to be zero. However, this assumption can
be waived without any difficulty. In the BEM analysis, the velocity gradient in the previous
time step is used as a first guess at each time step and is iterated until convergence (Chandra
and Mukherjee, 1984a, 1985, 1987; Mukherjee and Chandra, 1987). At the very first time
step, the velocity of the workpiece is assumed to be zero, and the friction model (Chen and
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Kobayashi, 1978; Li and Kobayashi, 1982) is used to obtain the value of the developed
tangential traction (t.). Later on, at any time step, the velocities of the contacting nodes of
the workpiece in the previous time step are used to estimate V, and a new estimate of t. is
obtained. Knowing the value of t. at the beginning of the time step, the size of the time
step, and the desired value of t. at the end of the time step, i. during the time step is
estimated and used in the BEM analysis.

The geometry of the plane-strain rolling problem considered here is shown in Fig. 14.
The initial thickness of the workpiece is 10 mm. The horizontal contact length of the roll
bite is 40 mm. Final thickness of the workpiece is 7.5 mm. The material used is commercially
pure aluminum at a temperature of 24°C. The details of the parameters for Hart's model
for this material and their significance are given by Alexopoulos (1981), Chandra and
Mukherjee (1984b) and Chandra (1986).

The process of rolling is nonsteady-state at the beginning of a bite. It becomes steady­
state as a material is rolled through the gap between the two rolls. The rollers have a
constant angular velocity and compress the material as it is driven through the roll bite. As
the workpiece comes in contact with the rollers, an interfacial friction force develops and
the workpiece is drawn into the roll bite. Free-surface conditions are assumed on each side
of the bite.

Figure 15 shows the variations in Almansi strains along the centerline of the workpiece
as it passes through the roll bite. The thickness reduction here is 25%. It is interesting to
note the small amount of material buildup just before the entrance into the roll bite. Due
to this phenomenon, Bu is initially negative before entrance into the roll bite. As the material
is gradually drawn between the rollers and the slab thickness is reduced, Gxx becomes tensile.
It reaches a peak value of 0.29 and drops slightly as the material passes by the rollers and
the thickness increases due to springback. The strain variations shown in Fig. 15 quali­
tatively agree quite well with the strain fields obtained by Dawson (1987) from a viscous
flow-type analysis. To avoid numerical instabilities, Dawson constrained the material vel­
ocity beyond the exit from the roll bite to be horizontal. In the present analysis, however,
traction-free conditions are assumed. This allows proper springback of the material.

The normal pressure distributions between the roll and the workpiece at different roll
velocities are shown in Fig. 16. For 25% reduction, the distribution is of the friction hill
type. As the roll velocity increases from 1 to 10 mm s-', the peak normal pressure changes
from 128-137 MPa. Also, the position of the peak shifts slightly toward the exit of the roll
bite from x/L = 2.5 to x/L = 2.67. The normal pressure distributions compare quite well
qualitatively to those obtained by Li and Kobayashi (1982) and Mori et at. (1982) from a
rigid-plastic finite element analysis.

Figure 17 shows the shear stress distributions at the roll-workpiece interface at two
different roll velocities. As the workpiece enters the roll bite, the relative velocity between

5432

--------. .... _-----,

o-I

-- Itrain (x-x)
- - - Itrain (y.y)
_.- Itrain (x-y)

0.374

0.299

0.224

0.149

.. 0.074
~

·2 -0.001

Vi -0.076

-0.151

-0.226

-0.300

-0.375
-2

x/L

Fig. 15. Variations of strains along the centerline [- strain (x-x); --~ strain (y-y); ~.- strain
(x-y)].



1726

150
140
130

....... 120...
0.. 110:;
'-' 100.,

90...
'" 80....., 70...
0.. 60-;

50E
0 40
Z 30

20
10

0

A. CHANDRA

2 3 4 5

x/L

Fig. 16. Distributions of normal pressures at different roll velocities (/1 0.10; - 1.0 mm s I.
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the workpiece and the roll is large. Accordingly, the shear stress is large. Once the workpiece
has entered the bite, the normal pressure increases and the relative velocity decreases.
Initially, the increase in normal pressure dominates and the shear stress goes up to a peak
value of 6.7 MPa for a roll velocity of 1.0 mm s- I (for J1. = 0.1). Then, the decrease in
relative velocity causes the shear stress to drop and at xlL = 2.58, the shear stress changes
direction. At this point, the relative velocity between the roll and the workpiece is negligible
and this point (or region) is called the neutral point (or region). The shear stress reaches a
value of -6.66 MPa before ~ising to zero at the exit from the roll bite. At a higher roll
velocity of 10 mm s- 1, the neutral point shifts toward the exit and occurs at xlL = 2.71.
The stress peaks also increase to +9.6 and -7.67 MPa. An increase in interface friction
also moves the neutral point toward the exit. As the friction coefficient goes from 0.10 to
0.15, as shown in Fig. 18, the position of the neutral point moves from xlL = 2.7 to
xlL = 3.0. For a roll velocity of 10 mm s- 1, the first peak rises from +9.6 to + 13.33 MPa.
However, the other peak changes from -7.67 MPa to only -8.33 MPa. The qualitative
nature (or shape) of the shear stress distribution along the roll bite is not affected much by
variations in roll velocity or interface friction.

Figure 19 shows the residual longitudinal stress distribution across the cross section
of the workpiece at the exit from the roll bite. The residual (Ju is tensile at the top and
bottom faces and compressive at the center. As the roll velocity increases from 1.0 to
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Fig. 17. Distributions of shear stress at the roll-workpiece interface (/1 = 0.10; - 1.0 mm s - I ;
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10 mm s- \ the residual stress peaks change from +55.0 to +61.6 MPa at the top and
bottom faces and from -106.7 to -118.32 MPa at the center. Also, the residual stresses
should be self-equilibrating. The distributions in Fig. 19 satisfy equilibrium with errors of
less than 10%.

3.4. Axisymmetric ring compression
As in plane-strain slab rolling, a neutral region also exists in axisymmetric ring com­

pression problems (see Fig. 20). This must be incorporated in the interface model.
3.4.1. Interface modeling. The interface conditions for axisymmetric upsetting can be

best explained in terms of a local axisymmetric coordinate system (iX, P, y). The origin of
this coordinate system is positioned at the tool-workpiece interface. For axisymmetric
upsetting, let the iX-axis be the tangential direction to the interface and let the p-axis be the
outward normal (from the workpiece) at the interface. Here, y denotes the hoop direction,
and the y-direction is identical to the global O-direction. Hence, Cauchy traction rates at
the interface can be expressed as

r(C) = if
a afJ (76a)

and
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Fig. 20. Schematic diagram of ring compression: (a) undeformed shape; (b) first deformation
mode; (c) second deformation mode.

(c) 0
LfJ = (lfJfJ· (76b)

An axisymmetric version of the friction model of Chen and Kobayashi (1978) shown in
eqn (74) is used to model the sliding contact at the tool-workpiece interface.

3.4.2. Numerical results. The particular material model used here is that due to Anand
(1982). The particular material parameters used here are for Fe---O.05 carbon steel in a
temperature range of 1173-1573 K and a strain rate range of 1.4 x 10 - 4 S - 1 to 2.3 x 10- 2

S- '. Once again, for the sake of brevity, discussions on the material model are avoided here.
Details of the material model along with the particular values of material parameters are
given by Anand (1982) and Rajiyah and Mukherjee (1987).

The FEM calculations are carried out using the algorithm of Bathe and Chaudhary
(1985) incorporated in the finite element analysis code ADINA. A similar strategy for FEM
analysis has also been used by Carter and Lee (1986). An elastic-plastic material model (with
isotropic work hardening) depicting the elastic-viscoplastic response of Fe---o.05 carbon
steel in a temperature range of 1173-1573 K and at a strain rate of 10- 3 S - I is used in the
FEM calculations. For the BEM analysis, the parameters for Anand's model were chosen
to fit the response of the elastic-plastic model undergoing a tension test at a strain rate of
1O- 3 s- l •

The ring geometry is chosen with a height-to-inner diameter-to-outer diameter ratio
(h: dido) of 2: 3 : 6. The diameter-to-height ratios (d: h) for the solid cylindrical specimens
are 1.0, 2.0 and 3.0.
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Figure 21 shows the changes in minimum internal diameter as functions of reduction
in height during ring compression tests with different friction conditions at the interface.
During a single ring compression test, the coefficient of friction is assumed to be constant
spatially and temporally. When there is no friction at the interface and the workpiece can
slide freely, the inner diameter, as well as the outer diameter, expands without bulging as
the ring is compressed. For J.l = 0.05, both the inner periphery and the outer periphery
bulge outward from the axis. For J.l = 0.1, however, the expansion of the inner diameter
increases by only 2%. With further increases in the coefficient of friction, the deformed
shape of the ring changes drastically. At J.l = 0.15, the inner periphery bulges inward while
the outer periphery bulges outward, indicating the existence ofa "neutral plane" in between.
At a 40% reduction in height, the internal diameter reduces by 16%. The inward bulging
of the inner surface becomes more pronounced with further increases in the friction co­
efficient. A similar trend is also observed by Chen and Kobayashi (1978) and Carter and
Lee (1986).

Figure 22 shows the variation in pressure distributions at the interface at different
stages of deformation. At a 10% reduction in height, the pressure distribution is almost
uniform, with a slight increase at the outer periphery. With further deformation, the die
pressure at a distance ofabout one-third of (do -d;) from the inner periphery also increases,
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0.5

0.0
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Fig. 22. Pressure distribution along the interface during ring compression test at different reductions
in height (Jl = 0.2).
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and for a 40% reduction in height, shows a peak value of 1.98 for (Jzz/So in this region.
The pressure distributions at various stages ofdeformation obtained from the FEM analysis
match quite well with those obtained from the BEM analysis. The maximum discrepancy
in (Jzz/S0 is less than 7%.

3.5. Axisymmetric extrusion
Many common extrusions and strip-drawing processes are axisymmetric in nature.

The application of the BEM to analyse axisymmetric extrusion processes is discussed in
this section. Particular attention is paid to die-workpiece interface conditions.

3.5.1. Interface modeling. Figure 23 is a schematic diagram ofan axisymmetric extrusion
process. The interface conditions for axisymmetric extrusion can be best explained in terms
of a local coordinate system (a, {3, }'). The origin of this coordinate system is positioned on
the die-workpiece interface. The a-axis is tangential to the die surface, and the {3-axis is the
outward normal to the die surface. Here, }' represents the hoop direction and is identical to
the global O-direction. Hence, Cauchy traction rates at the interface can, once again, be
expressed as

(c) 0
!, = (J,p (77a)

and
(c) 0

!p = (Jpp, (77b)

in the local coordinate system. Cauchy traction rates can then be related to the Lagrange
traction rates.

It is further assumed that the contact or lubricant layer adjacent to the die surface has
zero stiffness in the direction tangential to the contact surface. Therefore, only pressures
and shear loadings get transferred across the interface. Hence, (J" = 0 at the interface.
Using the fact that the normal has components (0, 1, 0) in the local coordinate system, the
Lagrange traction rates in the local coordinate system at the interface can be written as

(78a)

and

(78b)

It is assumed that sliding occurs in the a{3 plane only. A friction model of the type

o G,
(J.,p = h' /lV" (79a)

(Chandra and Mukherjee, 1987) is considered in the present analysis. Here, Gs and hare
the shear modulus and height of the interface element, respectively, and /l represents the
coefficient of friction. It is also assumed that (J,p saturates to a value of /l(Jpp. Thus,
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(79b)

and

(79c)

Such an assumption is consistent with Coulomb's law of friction.
3.5.2. Numerical results. The material model used to analyse axisymmetric extrusion

is that due to Anand (1982). The particular material parameters used here are for Fe-o.05
carbon steel in a temperature range of 1173-1573 K and strain rate range of 1.4 x 10- 4 S - I

to 2.3 x 10- 2 S - 1. Details of the material model along with the particular values ofmaterial
parameters are given by Anand (1982) and Rajiyah and Mukherjee (1987). For the friction
model, the parameters Gslh = 1.268 x 10 5 MPa m- 1

•

The FEM analysis reported here uses a piecewise quadratic description of velocities
over triangular elements. Time integration for both the BEM and FEM programs are
carried out by an explicit Euler-type method with automatic step control.

The geometry of axisymmetric extrusion considered here is shown in Fig. 23, and the
numerical results are presented in Figs 24-27. Figure 24 shows the steady-state distributions
of normalized axial stress, (jzzISo, for three different piston velocities in the absence of
friction, where So is a material constant. In particular, the axis of the workpiece is chosen
to be the z-axis and the stress distributions are shown for material points in the deformed
configuration, which initially had the same relative radial position (Ria = 0 and Ria = 1)
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Fig. 25. Steady-state distribution of (lRZ as functions of piston velocity (J1. = 0.0).
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in the billet. Maximum residual tensile stress in an extruded workpiece is of crucial impor­
tance in design since this is the primary potential source for crack initiation and growth. It
is seen from Fig. 23 that the rate dependence of (Jzz/So is quite significant. As the piston
velocity is tripled from 0.254 mm s- 1 to 0.762 mm s- I, the BEM analysis predicts a change
of 17.75% in the maximum axial tensile stress in the workpiece. The faster the billet is
forced through the die, the less time there is for stresses to relax at material points in the
workpiece as they move through the die. Consequently, the maximum axial tensile stress
upon exit from the die increases substantially with the speed of extrusion.

Another important feature ofelastic viscoplastic analysis is that following a peak value,
the magnitude of (Jzz decreases as a function of z in most of the billet that has passed
through the die. This is a result of stress relaxation in the workpiece after it is deformed.

The results for the steady-state distributions of the shearing stress (J RZ are shown in
Fig. 25. It is shown that there is a significant variation of shearing stress in the die region.
Residual axial stress distribution over a cross section at z = 0.375a from the die exit are
shown in Fig. 26. It should be noted that these residual stress distributions must be self­
equilibrating and, for the residual stresses obtained from the current BEM analysis, the
error in satisfying equilibrium is about 8% for (Jzz at z = 0.375a from the die exit. At the
die exit, the equilibrium of the residual (Jzz is satisfied with a 4% error and, at z = 2a, the
error in equilibrium drops to less than 1%.
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Fig. 27. Steady-state distribution of (Jzz as functions of friction coefficients for two values of R
(piston velocity = 0.762 mm s' I).
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For comparison, the finite element code NIKE2D (Hallquist, 1986) is used for ana­
lysing the axisymmetric extrusion problem with no friction. NIKE2D cannot handle the
state variable material model of Anand (1982). Accordingly, the stress-strain curve for a
tension test at a strain rate of 0.5 x 10- 2

S-1 is provided as the input material model to
NIKE2D. The residual Uzz at z = 0.375 obtained from NIKE2D is also shown in Fig. 25.
The distributions obtained from the BEM analysis compare well with those obtained from
the FEM analysis.

Figure 27 shows the effects offriction at the die-workpiece interface on the axial stress.
Three different values offriction coefficients are chosen for a piston velocity of 0.762 mm s- I.

The presence of friction increases the peak value of the axial stress. Increasing the
friction coefficient from Jl = 0.0 to Jl = 0.2 raises the peak value of uzz/So from 3.25 to 3.63.
The spatial position of the peak remains almost unchanged. It should be noted here that
the friction model with constant coefficient of friction, as used in the present analysis, is
crude at best. Much work remains to be done on accurate and realistic modeling of friction
in metal forming processes. The present analysis does show, however, the qualitative effects
that friction may have in the metal extrusion processes.

4. CONCLUSIONS

Forming is a widely used manufacturing process. The forming processes involve large
strains and rotations, in addition to the material nonlinearities due to elastoplasticity and
elastoviscoplasticity. The boundary conditions at the tool-workpiece interfaces are also
complicated for forming processes.

Traditionally, FEM has been used to analyse metal forming problems. However, mesh
degradation and inaccuracy of secondary variables are two common problems with such
approaches.

The BEM is another general purpose method. This paper reviews the applications
of the BEM for analysing several planar and axisymmetric metal forming problems. The
BEM is far more tolerant of aspect ratio degradation than FEM and can deliver secondary
variables that are as accurate as the primary ones. Handling of the interface friction
conditions is also relatively easy through the load correction term in the BEM.

Further research is, of course, needed to verify the advantages BEM can offer for this
class of problems. For axisymmetric problems, the BEM kernels are complicated elliptic
functions. The kernel evaluations over internal cells are also very complicated and need
care. Accordingly, the BEM axisymmetric calculations become inefficient if stress rates are
evaluated at a large number of internal points. In most metal forming problems, however,
the stresses on the boundary are of primary interest and, accordingly, a small number of
internal points can be used.

The biggest advantage of BEM, however, lies in the reduction of the dimension of the
problem by one, and this advantage becomes more and more significant as the size of the
problems and the number ofunknown variables increase. Recently, Zucchini and Mukherjee
(1991) also observed that the BEM analyses can be parallelized very efficiently. For linear
elastic problems, a speed-up of greater than five is reported on a six-processor machine
(IBM 3090).

The particular problems analysed here are, ofcourse, much simpler than real-life metal
forming processes. However, the results provide crucial insights into various forming
processes and establish the viability of the BEM for analysing such problems. Research is
currently underway to refine the BEM methodology and to apply it to real-life metal
forming problems.
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